An Automated Tool for State Machine Diagram Generation
in Mechatronics Education

Jasmine Lesner! and Gabriel Hugh Elkaim?

Abstract— We present a targeted tool designed to address a
specific challenge in teaching event-driven control systems: the
automated visualization of State Machines directly from source
code. While State Machines are fundamental in event-driven
control systems, their growing complexity can make debugging
and maintaining correspondence between design and code
increasingly difficult for students. Our tool employs lightweight
static analysis techniques leveraging Abstract Syntax Tree
patterns to automatically generate accurate state diagrams
from student implementations. By focusing on the immediate
needs of our students and the constraints of our educational
setting, this tool improves State Machine design, debugging,
and maintenance within our curriculum. Anecdotal evidence
suggests that students benefit directly from this accessible
and frequently usable solution, enhancing their understanding
and workflow in complex, state-driven systems. This approach
demonstrates the value of developing targeted educational tools
that address specific classroom needs, even within the broader
context of existing research in the field.

I. INTRODUCTION

State machines are crucial in software engineering, es-
pecially in embedded systems and robotics. Their imple-
mentation often involves complex structures of conditional
statements that check current states, events, parameters, and
guard conditions. This complexity, along with the varied
coding patterns used by different programmers, presents
a significant challenge when teaching event-driven control
systems: How can we automatically generate accurate
visual representations of state machines directly from
source code?

To address this challenge, we developed a tool to reverse-
engineer and visualize state machines by analyzing source
code. Our approach uses Abstract Syntax Tree (AST) anal-
ysis and an annotation pipeline implemented using XPATH
[1] and XSLT [2], designed to be lightweight and accessible
to students.

The tool is tailored for a mechatronics capstone course
at the University of California, Santa Cruz (UCSC) [3]
which is based on principles outlined in [4]. This project-
based course combines lab exercises with open-ended team
projects, where students build and program their robots (see
Figure 1) to compete in public events. State diagrams are
essential for helping students visually understand, design,
and communicate their robots’ behavior.

A key simplifying assumption of our approach is that it
is designed for explicit state machines where the state is

1Jasmine Lesner is with the Computer Science department at University
of California, Santa Barbara jlesner@ucsb.edu

2Gabriel Hugh Elkaim is with Computer Engineering department at the
University of California, Santa Cruz elkaim@soe.ucsc.edu

tracked using a single current state variable. Our approach
does not apply to implicit state machines, which have state
distributed across multiple variables and are best handled
with user-guided extraction [5]. Our simplifying assumption
aligns with the mechatronics programming style taught at
UCSC and allowed us to build a state diagram visualization
tool that is entirely automatic.

While we acknowledge the existence of broader solutions
in the research community, our tool is specifically designed
to be immediately accessible and beneficial to UCSC stu-
dents allowing for frequent use and rapid feedback. Anec-
dotal evidence suggests that students have already benefited
from this tailored approach.

Fig. 1. Student built UCSC mechatronics competition robot.

A. Related Work

State machine visualization is a well-researched area with
various approaches and tools available. However, many ex-
isting solutions are either too complex, unavailable, or un-
suitable for our specific context: supporting UCSC’s mecha-
tronics engineering students.

o Dynamic Analysis tools observe software behavior
in real-time to infer state machines [6], [7], [8].
While these provide accurate representations of exe-
cuted paths, they are often too complex for frequent
use in an educational setting and may miss inactive code
paths.

« Static Analysis approaches examine source code with-
out execution [9], [10], [11], [12]. These can be more
comprehensive but can produce overly complex dia-
grams [13] which are challenging to interpret.

Our tool employs static analysis, chosen for its ability
to provide comprehensive coverage of all potential states
and transitions. This is particularly crucial for our students
during the development and debugging phases of new robots,
where visualizing rare or impossible states might reveal
programming mistakes common among novice programmers.

While powerful tools and research projects exist in this
domain, they present barriers for our specific use case:

« Visualization tools like Graphviz [14], Mermaid.JS [15],
and PlantUML [16] require manual creation of diagram
descriptions, which is error prone and time-consuming
for students.

o Documentation generators like Doxygen [17] need
source code annotations, adding another avenue for
errors to students’ workflows.

o« UML tools such as Enterprise Architect [18] and re-
search tools such as [19], [20] and [12] are too complex
or unavailable for regular student use.

These limitations highlighted the need for a tool specifi-
cally designed for mechatronics at UCSC, capable of auto-
matically creating state machine diagrams directly from the
students’ source code, without requiring embedded annota-
tions or interactive user intervention. Our solution addresses
this need by providing a lightweight, accessible tool that
understands the event-driven software design patterns used
at UCSC.

ES_INIT
InitLightSubHSM();
InitDarkSubHSM();
InitJigSubHSM();
ES_Timer SetTimer(IG_TIMER, JIG_TIME);

InDark
> RunDarkSubHSM

/Entry:
StopMotors();
Exit:

DARK_TO_LIGHT / LIGHT TO_DARK

(InLight \
> RunLightSubHSM
/Entry:

ES Timer InitTimer(IG TIMER, JIG TIME);

LIGHT TO_DARK

[Exit:
ES_Timer_StopTimer(JIG_TIMER);

ES TIMEOUT
ES Timer SetTimer(IG_SPIN TIMER, JIG SPIN TIME:\W

Jig
» RunjigSubHSM

Fig. 2. State diagram generated from source code shown in Figure 3.
This diagram shows the top level of a HSM where each state (InDark,
InLight, Jig) runs a nested EFSM (omitted for brevity).

B. Contributions

We present a tool that automates the creation of state
diagrams from source code, making the process efficient and
error-free. Our key contributions are:

ES_Event RunTemplateHSM(ES_Event ThisEvent) {
uint8_t makeTransition = FALSE; TemplateHSMState_t
— nextState; ES_Tattle();
switch (CurrentState) {
case InitPState:
if (ThisEvent.EventType == ES_INIT) {
InitLightSubHSM(); InitDarkSubHSM() ;
< InitJigSubHSM(); ES_Timer_SetTimer (
— JIG_TIMER, JIG_TIME);
nextState = InDark;
makeTransition = TRUE;
ThisEvent.EventType = ES_NO_EVENT;
}
break;
case InLight:
ThisEvent = RunLightSubHSM(ThisEvent) ;
switch (ThisEvent.EventType) {
case ES_ENTRY: ES_Timer_ InitTimer (JIG_TIMER,
— JIG_TIME); break;
case ES_EXIT: ES_Timer_StopTimer (JIG_TIMER);
— break;
case LIGHT_TO_DARK: nextState = InDark;
< makeTransition = TRUE; ThisEvent.
— EventType = ES_NO_EVENT; break;
case ES_TIMEOUT: nextState = Jig; makeTransition
< = TRUE; ThisEvent.EventType = ES_NO_EVENT
— ; ES_Timer_SetTimer (JIG_SPIN_TIMER,
<~ JIG_SPIN_TIME); break;
}
break;
case InDark:
ThisEvent = RunDarkSubHSM (ThisEvent) ;
switch (ThisEvent.EventType) {
case ES_ENTRY: StopMotors(); break;
case DARK_TO_LIGHT: nextState = InLight;
— makeTransition = TRUE; ThisEvent.
— EventType = ES_NO_EVENT; break;
}
break;
case Jig:
ThisEvent = RunJigSubHSM(ThisEvent) ;
switch (ThisEvent.EventType) {
case JIG_FINISHED: nextState = InLight;
— makeTransition = TRUE; ThisEvent.
— EventType = ES_NO_EVENT; break;
case LIGHT_TO_DARK: nextState = InDark;
<~ makeTransition = TRUE; ThisEvent.
— EventType = ES_NO_EVENT; break;
}
break;
}
if (makeTransition == TRUE) {
RunTemplateHSM (EXIT_EVENT) ;
CurrentState = nextState; RunTemplateHSM(ENTRY_EVENT
—)i
}
ES_Tail(); return ThisEvent;

Fig. 3. Source code implementing the top level of a HSM which controls
a robot modeled after a cockroach. The robot moves in darkness, freezes in
the presence of light and has a periodic ’jig dance’.

1) Support for FSM, EFSM, and HFSM diagrams. We
use pycparser [21], a complete C language parser and
our approach can be extended to other languages like
C++, Java, and C# by replacing pycparser with srcML
[22].

2) Handling complex code structures'. State machine
behavior is often implemented through various nested
control structures: if-else branches and switch-case
statements that check guard conditions and manage
state transitions. Our tool supports a wide range of
these structures, including switch-case groups with-

'Our technical report [23] details supported code patterns.

Phase 1: Macro Preprocessing (CPP)

O Expand source code macros and include files so
that there are no dependencies on other files.

Phase 2: AST Generation (PycParser)

<
«

Lexical Analysis turns source into a series of
tokens representing basic language elements.

Syntax Analysis checks if the tokens follow the
grammar of C and identifies syntax errors.

Generated AST is combined with line number
annotated source code and saved to XML.

O+—0+—0

Phase 3: AST Annotation (XSLT)

AST Annotation Pipeline labels diagram states,
events, transition logic, guards and other features.

N <
S

Phase 4: Diagram Generation (GraphViz)

Atextual diagram description (suitable for
GraphViz) is generated using the annotated AST.

Diagram description is converted into a diagram
image (PDF / PNG / ...) using GraphViz.

:
|
o)

Fig. 4. Automatic diagram generation has four phases.

out break statements also fall through to default
clauses.

As the first open-source tool’ to automatically generate
state diagrams directly from source code, we aim to foster
broader use and collaboration.

II. METHOD

Figure 2 displays the state diagram generated from the
source code in Figure 3. This EFSM is the top level in
a HSM which controls a wheeled robot modeled after a
cockroach. The HSM controls behaviors like moving in
darkness, freezing in the presence of light and a periodic
‘jig dance’. Each top level HSM state runs a nested EFSM,
which are omitted for brevity. The key state diagram features
include: Initial State: Represented by a black dot at the
top, marks the HSM’s starting point. The currentsState is
assigned to this state before the machine begins. States:
Depicted as rounded boxes with the state name at the top.
These may contain entry and exit logic and form the top
level of the currentstate switch statement. In HSMs, states
can incorporate sub-states or reference other state machines,
indicated by an arrowhead pointing to the sub-state function
name. Transitions: Depicted as arrows between states and
labeled with triggering events (above line) and executed code

2Source code: https://github.com/jlesner/smv2 [24]

AST Annotation Pipeline

XML Normalize: Enhances the AST XML readability by removing
unnecessary whitespace and applying consistent indentation.

AST Declutter: Simplifies the AST by discarding superfluous
elements and attributes not required for state diagrams.

bLine / eLine: Assigns line numbers to AST elements,
to match them with their respective source code lines.

CurrentStateTest: Appends an attribute to switch case
and default AST elements to reflect the state being tested.

EventParamTest: Tags conditional statements that involve
event parameters with an EventParamTest attribute.

EventTypeTest: Tags conditional statements that involve event
types with an EventTypeTest attribute.

NextStateLabel: Marks elements indicating state changes,
showing the new state after a transition.

CascadeElements: Adds child elements to uninterrupted Case
and Default elements in switch statements.

CascadelLabel: Creates a label from merged case values,
simplifying the visualization of switch statement cascades.

EventLabel: Combines EventType and EventParam values in
elements tagged with NextStateLabel.

GuardElements: Marks If statements associated with state
transitions by adding a guard child element.

GuardLabel: Uses CurrentStateTest, NextStateLabel, and line
numbers to label guards, aiding in differentiating conditions.

onEntry / onExit: Indicates code executed upon state entry /
exit, crucial for understanding state-dependent behaviors.

onTransition: Includes elements for code executed during state
transitions, essential for tracking changes in behavior.

Code Declutter: Removes lines of code that are redundant
or non-essential for state diagram labels.

O0+0+«0+0+0+«0+-0+«0+0+«0+0+«0+0+0+0

Fig. 5. Pipeline of AST annotations discussed in section II-C.

(below line). Events can be triggered by external inputs
or internal timers. Transitions are established by assigning
the nextstate variable. Guards: Are conditional statements
mid-transition that determine which transition to take (in-
cluding returning to the original state), enabling fine-grained
control over state changes. Our tool generates state diagrams
(like Figure 2) directly from source code (like Figure 3) by
operating in four phases (Figure 4):

A. Phase 1: Macro Preprocessing with CPP

Before its AST can be generated we must first prepro-
cess source code to expand any macros contained such as
#include directives so the source code our parser (PycParser)
reads has no dependencies on other files. To enhance diagram
clarity we prevent expansion of macros defined by students
(as opposed to macros defined by whatever micro-controller
framework they are using) so generated diagrams have
human friendly labels (e.g. LEFT_-BUMBER) instead of cryptic
numeric codes (e.g. 0x02F4).

B. Phase 2: AST Generation

We employ PycParser [21] to parse the self-contained
source code, generating an XML structure comprising ‘ast’
and ‘code’ subtrees. The ‘code’ subtree holds the original
source code lines annotated with line numbers and the ‘ast’
subtree contains the parsed Abstract Syntax Tree (AST), each

Init Orienting
/Entry: | — |/Entry:
/Exit: /Exit: Set zone half (right or left)

ORIENTED

Moving_SPointZone
/Entry:
[Exit:

Update zone half from dir

IN_SPTZONE

Shooting
/Entry:
/Exit:

MAG_EMPTY

Reloading
/Entry:
/Exit:

IN_SPTZONE

MAG_FULL

Returning_5PointZone
/Entry:
/Exit:

Fig. 6. This state diagram was manually created by a student team (using
GraphViz) to represent the intended behavior of their robot for a UCSC
mechatronics competition. The diagram shows the top level of an HSM that
has an autonomous robot orient itself, move to a ball shooting zone, perform
a shooting action sequence until its ball magazine is empty at which point
it carries out a ball reloading action sequence until its ball magazine is full,
thereafter returning to the ball shooting zone for more shooting.

element of which references its matching source code lines
so that these lines can be used to create diagram labels.

C. Phase 3: AST Annotation

Next we apply a pipeline of annotations as shown in Figure
5. In this pipeline we simplify the AST by removing un-
needed elements and attributes. We mark significant parts of
the AST, like switch cases and conditional statements, with
attributes that indicate their roles in state transitions. Next,
we label key elements that depict state changes and handle
complex conditions within switch statements. Elements re-
lated to state transitions are also tagged to show changes in
behavior and conditions affecting these transitions. Finally,
we streamline label annotations by removing redundancies
and prioritizing essential information.

D. Phase 4: Diagram Generation

Now the annotated AST is used to generate a GraphViz
description of a diagram as follows: Diagram Setup: Output
format is set to plain text suitable for Graphviz, and the entry

ES_INIT
InitHSM_Top_Orienting();
InitHSM_Top_Moving5PointZone();
InitHSM_Top_Shooting();
nitHSM_Top_Reloading();
InitHSM_Top_Returning5PointZone();
fieldSide = FIELD_UNKNOWN;

Waiting)

‘/Entry:
ES_Timer_InitTimer(TIMER_TOP,
TIMER_TICKS_WAIT);
DCMotor_Stop();
DCMotor_FlyWheelOff();
RCSERVO_CLOSE();
JExit:

(ES_TIMEOUT)(TIMER_TOP)

Orienting
_Orienting

_Top_Orienting();

ORIENTED
fieldSide = ThisEvent.EventParam;

(Moving_5PointZone)
» RunHSM_Top_Moving5PointZone

Returning_5PointZone \
» RunHSM_Top_Returning5PointZone
/Entry:

/Entry:
InitHSM_Top_Moving5PointZone();
M

Set | | g5PointZone(f

InitHSM_Top_Returning5PointZone();
[Exit:

JExit:

IN_5PTZONE
fieldSide = ThisEvent.EventParam;

IN_5PTZONE

Shooting

» RunHSM _Top_Shooting

/Entry:
InitHSM_Top_Shooting();
Set_FieldSide_Shooting(fieldSide);

MAG_FULL

JExit:

ﬁGiEMPTY

Reloading

» RunHSM_Top_Reloading

/Entry:
InitHSM_Top_Reloading();
Set_FieldSide Reloading(fieldSide);

Exit:

Fig. 7. Matching Figure 6 this diagram was automatically generated by
our tool and represents the actual robot behavior as implemented by source
code. When compared we can see how the implemented robot behavior
deviates: (1) there is a new Waiting state which was added before the
Orienting state likely to facilitate handling the robot after power up
(2) the Returning-5PointZone state has no entry transitions which is
likely an implementation mistake.

point for the state machine is identified. Loop over States
and Guards: Loop through AST elements representing
different states and guards, excluding the entry state and
guard conditions. Format these with suitable GraphViz styles
and labels, including onEntry and onExit code blocks. Loop
over Transitions: Loop through state transitions, adding
them to the diagram description with their onTransition
code blocks. Finally, the diagram description is rendered
visually in formats that Graphviz supports (PNG, PDF, etc.).

III. USER EVALUATION

Our tool was evaluated by third parties (UCSC mecha-
tronics capstone course teams) whose code was not used for
development of our tool. Participants were emailed tool use
instructions (‘README’ from [24]) and asked to try the tool
and share their experiences. While our sample size is small,
the verbatim user comments below provide insights.

Regarding ease of use, those familiar with Linux found
the tool easy to use: “It worked perfectly with 2 commands.”

However, some struggled and expressed a desire “fo have a
GUI to script the commands in a more entry level manner
for someone that is more unfamiliar with using command
line jargon.”

Regarding time savings: “Very helpful if you needed to
visualize a more complex state machine and see what each
state is doing. But if you just need a basic overview I think
you could easily draw one out in about the same time with
an iPad.” Another participant said, “This tool was actually
extremely time efficient. I have used other auto generators
in the past and have found the setup for the files to be
cumbersome. This would save me 90% of the time to set up
alternatives and 95% of the time to draw it out manually.”

Regarding accuracy: “Diagrams did seem very close to
how they were meant to be implemented. The only discrep-
ancies would be how the text overlaps some transitions so
it’s hard to tell exactly where things are going.” Another par-
ticipant noted, “Surprisingly accurate for the state machine
we built. It followed the logical path with the conditions and
outputs quite well. I cannot pinpoint any direct errors of
logical fault within the first 10 minutes of looking at it.”

Additionally the UCSC mechatronics course instructor
commented that “the automated state machine diagrams
demonstrated flaws in the students’ implementations that
were difficult to determine from looking at their source code
but immediately obvious looking at the generated diagram.
As a diagnostic tool, this is excellent to improve instruction to
emphasise the correct coding patterns and where the students
tend to get it wrong.”

To illustrate this point a state diagram manually created
by a team using GraphViz is shown in Figure 6. This
diagram was thought to represent the top level of an HSM
that controls a robot. The robot orients itself, moves to a
ball shooting zone, performs a shooting sequence until its
ball magazine is empty, then reloads the magazine before
returning to the ball shooting zone to repeat the process.

When the same robot’s top-level HSM was analyzed
by our tool, the resulting diagram (Figure 7): (1) In-
cludes additional details, such as the names of the
HSM’s lower-level EFSMs, like RunHSM_Top_Orienting and
RunHSM.Top.Moving5PointZone. (2) Displays a new waiting
state added before the orienting state, possibly to facili-
tate handling the robot after power-up (3) Shows that the
Returning-5PointZone state has no entry transitions, which
appears to be an implementation error. Such errors are easier
to spot using generated state diagrams than by inspecting
code.

IV. BENCHMARK EVALUATION

Our tool is typically used with HSMs, which have one
top-level state diagram and one diagram per nested FSM
so each tool run produces multiple diagrams. Since the
generation of one diagram is independent of the others,
we explored whether concurrent diagram generation could
reduce user wait times. A benchmark was conducted to assess
this potential benefit.

The tests were performed on a system running WSL2
Ubuntu 22.04.4 LTS Linux on Windows 10 Pro with an
Intel Core i7-8850H CPU. This processor has six physical
cores and twelve hyper-threaded virtual cores (vCores), each
running between 800 MHz and 4200 MHz.

TABLE I
BENCHMARK RESULTS

Run vCore Usage Elapsed Time
Run 1 821% 1:21.22
Run 2 808% 1:17.26
Run 3 819% 1:35.38
Run 4 816% 1:16.48

Table I shows the results of four benchmark runs. Each
run processed identical code (~70 files, ~14,000 lines) to
generate thirteen state diagrams — two of which are shown
in Figures 2 and 7. The tests were conducted on a laptop
connected to AC power, using the default power settings in
Windows 10 Pro. Three virtual cores were occupied with
background tasks, leaving nine cores available for bench-
marking.

The benchmark results reveals the following:

1) Diagram Generation Time: Each state diagram takes
less than ten seconds to generate, with a 20-25% varia-
tion in time between the fastest and slowest runs. While
diagram complexity may play a role, this variation is
likely due to CPU thermal throttling.

2) Elapsed Time vs. vCore Usage: Higher vCore usage
did not lead to faster completion times. In fact, the
longest processing times occurred with the highest
vCore usage, again suggesting thermal throttling re-
duced core performance, increasing overall time de-
spite higher vCore percentages.

Since our tool efficiently uses eight of the nine available
vCores, there is limited potential for further parallelization.
While servers with more vCores could benefit from concur-
rent diagram generation, typical laptops and PCs are unlikely
to see significant performance gains from additional parallel
processing.

V. DEVELOPMENT

Initially, we used regular expressions [25] to extract details
for state diagrams. This method struggled with varied code
structures like switch-case and if-elseif-else constructs.
To address this, we switched to a C parser and ASTs in XML,
which allowed us to use XPATH and XSLT.

Our second approach transformed ASTs directly into state
diagrams. This worked for simpler diagrams but became too
complex for diagrams with event parameters, transition logic,
and guards. We then developed a modular annotation pipeline
(Figure 5) which breaks down diagram generation into steps
each targeting a specific annotation type. For example Figure
8 shows one of the ways the CurrentStateTest (fourth from
top in Figure 5) is implemented for switch statements.
An alternative implementations is used for if-elseif-else
constructs.

This new modular approach simplifies debugging and
verification of each individual annotation step and the AST,
once annotated, is then converted into a Graphviz state
diagram description with a single XSLT template.

Currently, our tool uses XSLT, Perl, Python, and standard
Unix commands within a Docker [26] container for Unix-like
systems. Essential libraries include PycParser [21] for pars-
ing source code and Ixml [27] and libsaxonb-java [28] for
XML processing, enhancing compatibility across different
environments. This setup is well-suited for CI/CD pipelines
and can be adjusted through environment variables, ensuring
consistent operation across systems.

<xsl:template match="
block_items|
(Rclass='Case’
or @class='Default’)
and (

ool oolloo
/block_items[@class='Switch’]
/cond[@class='ID’ and @name=’CurrentState’

)
and not (@CurrentStateTest)
RS
<xsl:copy>
<xsl:apply-templates select="@x"/>
<xsl:attribute name="CurrentStateTest">
<xsl:value-of select="
./expr[@class='1ID’]/@name"/>
</xsl:attribute>
<xsl:apply-templates select="node()"/>
</xsl:copy>
</xsl:template>

Fig. 8. Implementation of the CurrentStateTest step in Figure 5. This
demonstrates how branches of switch statements conditional on the vari-
able CurrentState are tagged with a CurrentStateTest attribute.
This attribute labels the current switch branch, enabling subsequent
annotation pipeline logic to reference this label without recalculating it.
The approach is designed to be modular, allowing for other templates to be
triggered because the FSM current state may be determined differently, such
as through if-elseif-else construct instead of a switch statement.
Section IV in our technical report [23] explains how the XPATH / XSLT
code above operates.

VI. LIMITATIONS AND FUTURE WORK

As mentioned earlier a key simplifying assumption of our
approach is that it is designed for explicit state machines
where the state is tracked using a single current state vari-
able. Our approach does not apply to implicit state machines,
which have state distributed across multiple variables and are
best handled with user-guided extraction [5].

Our approach also depends on consistent naming con-
ventions to identify the current state, next state transitions,
event types, and event parameters. While the specific variable
names do not matter, they must be used consistently. Source
code with inconsistent naming (i.e., using different names
for the same thing) must be fixed before our tool can work
effectively.

Looking ahead, state diagrams can visually display issues
like incomplete transitions and states lacking exit transitions
(deadlocks). Our tool could automatically detect and flag
these problems in generated diagrams. We also aim to
enhance our tool to generate diagram descriptions for vi-
sualization tools like Mermaid.js and PlantUML, and to add

diagram types such as Harel Statecharts [29]. For large state
machines, our tool could generate interactive diagrams that
allow users to zoom in or drill down for more information.

VII. CONCLUSION

This paper presented a targeted tool designed to address a
specific challenge in teaching event-driven control systems:
the automated visualization of State Machines directly from
source code. Our key contributions include:

1) Development of a lightweight, accessible tool that
automatically generates accurate state diagrams from
student implementations using static analysis tech-
niques and Abstract Syntax Tree patterns.

2) Support for Finite State Machines (FSM), Extended
Finite State Machines (EFSM), and Hierarchical State
Machines (HSM) diagrams, with the ability to handle
complex code structures.

Our approach demonstrates the value of developing tar-
geted educational tools that address specific classroom needs,
even within the broader context of existing research in the
field. By focusing on the immediate needs of our students and
the constraints of our educational setting, this tool improves
the State Machine design, debugging, and maintenance pro-
cesses within our curriculum.

The limitations of our approach include its design for
explicit state machines tracked by a single current state
variable and dependence on consistent naming conventions.
Future work could involve automatic detection and flagging
of issues like incomplete transitions and deadlocks, support
for additional diagram types such as Harel Statecharts, and
generation of interactive diagrams for large state machines.

This research contributes to the field of engineering edu-
cation by providing an open-source tool that bridges the gap
between theoretical understanding and practical implementa-
tion of state machines. It highlights the potential for targeted,
domain-specific tools to enhance the learning experience in
complex technical subjects.

ACKNOWLEDGMENTS

We want to thank Bailen Lawson who supplied the code
samples we used for tool development and testing. We
also want to thank Ryan Taylor and Aidan Doshier and
Julio Galan for assisting with evaluations. This project was
initiated and funded by CAHSI Undergraduates Program and
supported by National Science Foundation Grants #2034030
and #1834620.

REFERENCES

[1] World Wide Web Consortium, “XML Path Language (XPATH)
Specification.” [Online]. Available: https://www.w3.org/TR/xpath/

[2] , “Extensible Stylesheet Language Transformations (XSLT)
Version 3.0.” [Online]. Available: https://www.w3.org/TR/xslt-30/

[3] G. H. Elkaim, “A hole in one: A project-based class on mechatronics,”
in 2011 IEEE International Conference on Microelectronic Systems
Education, 2011, pp. 35-38.

[4] J. E. Carryer, “The design of laboratory experiments and projects for
mechatronics courses,” Mechatronics, vol. 5, no. 7, pp. 787-797, 1995.

[5]

[6]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

W. Said, J. Quante, and R. Koschke, “Mining understandable
state machine models from embedded code,” Empir. Softw. Eng.,
vol. 25, no. 6, pp. 4759-4804, 2020. [Online]. Available: https:
//doi.org/10.1007/s10664-020-09865-0

N. Walkinshaw, R. Taylor, and J. Derrick, “Inferring extended finite
state machine models from software executions,” Empirical Software
Engineering, vol. 21, no. 3, pp. 811-853, 2016. [Online]. Available:
https://doi.org/10.1007/s10664-015-9367-7

D. Lorenzoli, L. Mariani, and M. Pezze, “Automatic generation of
software behavioral models,” in Proceedings of the 30th international
conference on Software engineering, 2008, pp. 501-510.

G. Ammons, R. Bodik, and J. R. Larus, “Mining specifications,” ACM
Sigplan Notices, vol. 37, no. 1, pp. 4-16, 2002.

N. Walkinshaw, K. Bogdanov, S. Ali, and M. Holcombe, “Automated
discovery of state transitions and their functions in source code,”
Software Testing, Verification and Reliability, vol. 18, no. 2, pp. 99—
121, 2008.

C. Mosler, “Reengineering of State Machines in Telecommunication
Systems,” Department of Computer Science 3, RWTH Aachen Univer-
sity, 2007.

R. Knor, G. Trausmuth, and J. Weidl, “Reengineering c/c++ source
code by transforming state machines,” in Development and Evolution
of Software Architectures for Product Families: Second International
ESPRIT ARES Workshop Las Palmas de Gran Canaria, Spain Febru-
ary 26-27, 1998 Proceedings 2. Springer, 1998, pp. 97-105.

M. Abadi and Y. A. Feldman, “Automatic recovery of statecharts
from procedural code,” in Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, ser.
ASE ’12. New York, NY, USA: Association for Computing
Machinery, 2012, p. 238-241. [Online]. Available: https://doi.org/10.
1145/2351676.2351711

D. H. A. Zeeland, “Reverse-engineering state machine diagrams from
legacy C-code,” Ph.D. dissertation, Eindhoven University of Technol-
ogy, 2009.

J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and
G. Woodhull, Graphviz and Dynagraph — Static and Dynamic Graph
Drawing Tools. Berlin, Heidelberg: Springer Berlin Heidelberg,

[15]
[16]
(17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]
[27]

(28]

[29]

2004, pp. 127-148.
978-3-642-18638-7_6
“Mermaid.” [Online]. Available: https://mermaid.js.org/

“PlantUML.” [Online]. Available: https://plantuml.com/

D. van Heesch, “Doxygen.” [Online]. Available: https://www.doxygen.
nl/

S. Systems, “Enterprise architect”” [Online].
//sparxsystems.com/products/ea/index.html

W. Said, “Interactive state machine mining from embedded software,”
Ph.D. dissertation, University of Bremen, Germany, 2020. [Online].
Available: https://d-nb.info/1222710366

T. Sen and R. Mall, “Extracting finite state representation of Java
programs,” Software and Systems Modeling, vol. 15, pp. 497-511, May
2016. [Online]. Available: https://doi.org/10.1007/s10270-014-0415-3
E. Bendersky and contributors. pycparser. [Online]. Available:
https://github.com/eliben/pycparser

M. L. Collard, M. Decker, and J. I. Maletic, “Lightweight Transfor-
mation and Fact Extraction with the srcML Toolkit,” in Proceedings
of the 11th IEEE International Working Conference on Source Code
Analysis and Manipulation (SCAM’11). 1EEE, 2011, p. 10 pages.
J. Lesner and G. H. Elkaim, “Technical Report: State Machine
Visualizer.” [Online]. Available: https://github.com/jlesner/smv2/blob/
main/smv_ieee_035.pdf

——, “Source Code: State Machine Visualizer.” [Online]. Available:
https://github.com/jlesner/smv2

“Perl Regular Expressions.” [Online]. Available: https://perldoc.perl.
org/perlre

1. Docker, “Docker.” [Online]. Available: https://www.docker.com/

S. Behnel and contributors, “Ixml.” [Online]. Available: https:
//github.com/Ixml/Ixml

M. Kay and S. Limited, “libsaxonb-java.”” [Online]. Available:
https://saxon.sourceforge.net/

D. Harel, “Statecharts: A Visual Formalism for Complex Systems,”
Science of Computer Programming, vol. 8, no. 3, pp. 231-274, 1987.

[Online]. Available: https://doi.org/10.1007/

Available: https:

